
THE INTEL SYSRET PRIVILEGE ESCALATION
By George Dunlap June 13, 2012 Uncategorized

The Xen Security team recently disclosed a vulnerability, Xen Security Advisory 7 (CVE-
2012-0217), which would allow guest administrators to escalate to hypervisor-level
privileges. The impact is much wider than Xen; many other operating systems seem to
have the same vulnerability, including NetBSD, FreeBSD, some versions of Microsoft
Windows (including Windows 7).
So what was the vulnerability? It has to do with a subtle difference in the way in which
Intel processors implement error handling in their version of AMD’s SYSRET instruction.
The SYSRET instruction is part of the x86-64 standard de�ned by AMD. If an operating
system is written according to AMD’s spec, but run on Intel hardware, the difference in
implementation can be exploited by an attacker to write to arbitrary addresses in the
operating system’s memory. This blog will explore the technical details of the
vulnerability.

It should be noted that there are some questions about the way in which the disclosure
process for this vulnerability was handled. In order to make sure that everyone can fully
participate in the discussion, including system administrators who may at this moment
be patching their systems, there has been a conscious decision to postpone any
discussion about the disclosure process for one week, until the 19th of June.

INTRODUCTION: CANONICAL ADDRESSES,
CONTEXT SWITCH, AND SYSRET
The �rst concept to understand is that of canonical addresses. When designing the 64-
bit extensions to x86, AMD didn’t extend the actual virtual address space to a full 64 bits,
but only to 48 bits. (This was mainly done to balance the bene�ts of extended address
spaces with the cost of extra levels of the page table: 64 bits of virtual address space
would have required a 6-level pagetable; 48 bits gives you 256 terabytes of virtual
address space, far more than the largest machines will have for many years to come,
and only requires 4 levels of pagetable.)

 0



Users Developers Downloads Help About    

https://xenproject.org/author/dunlapg/
https://xenproject.org/category/uncategorized/
https://xenproject.org/
https://xenproject.org/about-us/
https://twitter.com/xen_org
https://www.facebook.com/pages/The-Xen-Project/181712638644349
http://www.linkedin.com/groups?home=&gid=167190
https://youtube.com/channel/UCZQInhputqRioBGzVvqRaBw
https://www.slideshare.net/xen_com_mgr/

They could have made the processor just ignore the extra 16 bits of address space, but
clever programmers have a tendency to take advantage of these kinds of quirks to do
things like storing extra information in the “unused” portions of virtual addresses. These
clever tricks would break, however, if the processors ever decided to extend the address
space into more bits. In order to prevent this, they put in restrictions to the
microprocessor: Any 64-bit value that is used as a virtual address (for instance, written
into the instruction pointer register, RIP) must be in canonical form: That is, bits 48-63
must be the same as bit 47. Valid (or “canonical”) addresses space thus exists in two
non-contiguous 128-terabyte chunks: from 0x0000000000000000-0x00007fffffffffff , and
then from 0xffff800000000000-0xffffffffffffffff . Any time a 64-bit value is used as a
virtual address that does not �t in one of these two ranges, the processor will throw a
general protection fault (#GP).
The next thing to understand is the process of context switching between the guest and
the hypervisor. Whenever switching from a lower privilege to a higher privelege (either a
kernel or a hypervisor), the registers of the lower-level privilege must be saved and
replaced with those of the higher privilege. When an interrupt or exception is delivered
while in guest mode, the RIP , stack pointer, and code segment (which encodes the
privilege level) are changed by the hardware; the hypervisor then stores the rest of the
guest state on its stack, and handles the interrupt.
In the early days of x86, a system call was treated as a special-case of an interrupt or
exception: typically the guest would execute INT instruction to enter the hypervisor or
operating system, and the hypervisor would execute IRET to return to the guest. But both
AMD and Intel’s performance analysis teams determined that for processes which made
a signi�cant number of system calls, going through the normal exception path in the
processor was signi�cantly slower. So they independently came up with special
instructions for voluntarily escalating privilege: AMD came up with SYSCALL / SYSRET , and
Intel came up with SYSENTER / SYSEXIT . They have slightly different semantics, and they’re
not available in all modes on both processors. Since SYSRET is part of the x86-64
standard, and available on all processors in 64-bit mode, it’s common for 64-bit operating
systems and hypervisors to use it exclusively.
Intel’s version of SYSRET, however, has a very subtle difference in behavior than AMD’s
version. It is this difference that is the source of the problem.

SYSRET ON INTEL AND AMD
The key difference between SYSCALL / SYSRET and INT / IRET is how much information is
stored and where. SYSCALL / SYSRET instructions only save and restore the RIP of the
guest, as well as changing the code segment selector (which effectively changes the
privilege level). Furthermore, rather than reading IDTs and writing to stack frames, the
instructions copy the guest RIP to and from the RCX register, and the segment selectors
and hypervisor RIP to and from various other processor registers. The hypervisor is
responsible for saving and restoring all of the other registers, including the stack pointer (

RSP).
So the end-to-end effect of the SYSRET instruction, on both Intel and AMD, is as follows:

Load RIP from RCX

Change code segment selector to guest mode

Now, as we said before, RIP is used as a virtual address, so it must be canonical. RCX ,
however, is a general purpose register, and may contain any 64-bit number. So if for
some reason there is a non-canonical address in RCX , upon executing the SYSRET
instruction, the processor will throw a general protection fault (#GP).
Now here comes the subtle difference. The AMD and Intel architecture speci�cations
include pseudocode that is meant to be a precise description of what the instruction
does. In the AMD pseudocode, there is no explicit mention of the check for a canonical
address; however, the actual RIP is not assigned until after the privilege level has been
changed back to guest mode; and experimentation has con�rmed that a SYSRET
executed on AMD with a non-canonical address in RCX will throw the #GP in guest mode.
However, in the Intel pseudocode, the check for a guest canonical address is explicit, and
happens before the privilege level is changed. This means that if a SYSRET is executed on
an Intel processor with a non-canonical address in RCX , the processor will throw a #GP in
priveleged mode.
It’s a subtle difference, but it’s important, because the value of the stack pointer used
when the processor delivers a #GP will change depending on the privilege level. If a #GP
is delivered in guest mode, the processor will load the hypervisor’s RSP from a special
hypervisor-designated entry point. But if the #GP is delivered while in hypervisor mode,
the processor will use the current RSP , so that it can effectively “nest” the exception.
But recall that the SYSRET instruction doesn’t restore the RSP ; the hypervisor has to do
that. So by the time the #GP happens, the hypervisor has already restored the RSP to
what was in the guest’s RSP when it did the SYSCALL , along with all of the other general-
purpose registers.
So if the guest can induce the hypervisor to have a non-canonical RIP to return to, it can
set the RSP to any value it wants to in hypervisor memory, and get the hardware (in
delivering a #GP) to overwrite it. This can in turn be leveraged into a full exploit (the
details of which are left as an exercise to the reader).
The �x in Xen’s case is, on the SYSRET return path, to check to make sure that RCX is
canonical. If it is not, Xen will fall back to the slower IRET path, which will behave as
expected.

THE FALL-OUT


I’ve used “hypervisor” and “guest” because that’s how it affects Xen; but it should be clear
that the same exact attack might work against operating systems as well. And it turns
out that it does. It seems that 64-bit versions of NetBSD, FreeBSD, and Microsoft
Windows 7 were all vulnerable.
OpenBSD and Linux were not vulnerable. Linux actually �xed the bug in 2006, with CVE-
2006-0744. But the description says “Linux kernel before 2.6.16.5 does not properly
handle uncanonical return addresses on Intel EM64T CPUs…”, which makes it sound like
something Linux-speci�c. It’s therefore not surprising that it attracted little notice from
other operating systems.
Because Intel’s implementation of SYSRET matches their published spec, they consider
their processors to be behaving correctly. However, the SYSRET instruction was de�ned
by AMD as part of the x86-64 architecture, and Intel’s version is obviously intended to be
compatible with AMD’s version. If the majority of operating systems (acting
independently) managed to “not properly handle uncanonical return addresses on Intel
EM64T CPUs”, it’s hard not to conclude that Intel made a mistake when designing their
speci�cation.

A R C H I V E S

Archives

Select Month

T O P I C S

Announcements
(921)

Commentary
(18)

Events
(42)

HowTo

Search... 



http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0744
https://xenproject.org/category/announcements/
https://xenproject.org/category/commentary/
https://xenproject.org/category/events/
https://xenproject.org/category/howto/

(9)

Press Releases
(30)

Releases
(109)

Security
(10)

Technical
(12)

Uncategorized
(325)

User Story
(31)

RELATED POSTS

XEN PROJECT HYPERVISOR POWER MANAGEMENT:
SUSPEND-TO-RAM ON ARM ARCHITECTURES

zkeaton
July 19, 2018

IMPROVING THE STEALTHINESS OF VIRTUAL MACHINE

Uncategorized

Uncategorized


https://xenproject.org/category/press-releases/
https://xenproject.org/category/releases/
https://xenproject.org/category/security/
https://xenproject.org/category/technical/
https://xenproject.org/category/uncategorized/
https://xenproject.org/category/user-story/
https://xenproject.org/author/zkeaton/
https://xenproject.org/2018/07/19/xen-project-hypervisor-power-management-suspend-to-ram-on-arm-architectures/
https://xenproject.org/2018/06/21/improving-the-stealthiness-of-virtual-machine-introspection-on-xen/
https://xenproject.org/category/uncategorized/
https://xenproject.org/category/uncategorized/

IMPROVING THE STEALTHINESS OF VIRTUAL MACHINE
INTROSPECTION ON XEN

zkeaton
June 21, 2018

ANNOUNCING THE XEN PROJECT 4.11 RC AND TEST DAY
SCHEDULES

Lars Kurth
April 18, 2018

Uncategorized

A B O U T T H E X E N P R O J E C T

Governance

Trademark Policy

Logos & Mascots

The Linux Foundation

W E B S I T E

About Us

Contact Us

Privacy Policy

Terms of Use



https://xenproject.org/author/zkeaton/
https://xenproject.org/author/larsk/
https://xenproject.org/2018/06/21/improving-the-stealthiness-of-virtual-machine-introspection-on-xen/
https://xenproject.org/2018/04/18/announcing-the-xen-project-4-11-rc-and-test-day-schedules/
https://xenproject.org/category/uncategorized/
https://xenproject.org/developers/governance/
https://www.linuxfoundation.org/trademark-usage/
https://xenproject.org/footer/logos-mascots/
https://xenproject.org/footer/linux-foundation/
https://xenproject.org/about-us/
https://xenproject.org/about-us/contact-us/
http://www.linuxfoundation.org/privacy
https://www.linuxfoundation.org/trademark-usage

Copyright © The Linux Foundation®. All rights reserved. The Linux Foundation has registered trademarks and uses

trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage page. Linux is a registered

trademark of Linus Torvalds. Privacy Policy and Terms of Use



https://www.linuxfoundation.org/trademark-usage
http://www.linuxfoundation.org/privacy
http://www.linuxfoundation.org/terms

