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1111 IntroductionIntroductionIntroductionIntroduction    

 

 

Intel® Secure Key, previously code-named Bull Mountain Technology, is the Intel 

name for the Intel® 64 and IA-32 Architectures instruction RDRAND and its underlying 

Digital Random Number Generator (DRNG) hardware implementation. Among other 

things, the DRNG using the RDRAND instruction is useful for generating high-quality 

keys for cryptographic protocols. 

This Digital Random Number Generator Software Implementation Guide is intended to 

provide a complete source of technical information on RDRAND usage, including code 

examples. Included in this document are the following additional sections: 

 

Section 2: Random Number Generator (RNG) Basics and Introduction to the DRNG. 

This section describes the nature of an RNG and its pseudo- (PRNG) and true- 

(TRNG) implementation variants, including modern cascade construction RNGs. 

We then present the DRNG's position within this broader taxonomy. 

Section 3: DRNG Overview. In this section, we provide a technical overview of the 

DRNG, including its component architecture, robustness features, manner of 

access, performance, and power requirements. 

Section 4: RDRAND Instruction Usage. This section provides reference information on 

the RDRAND instruction and code examples showing its use. This includes 

RDRAND platform support verification and suggestions on DRNG-based libraries.  

 

This document is designed to serve a variety of readers. Programmers who already 

understand the nature of RNGs may refer directly to section 4 for RDRAND instruction 

reference and code examples. RNG newcomers who need some review of concepts to 

understand the nature and significance of the DRNG can refer to section 2. Nearly all 

users will want to look at section 3 which provides a technical overview of the DRNG.   
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2222 RNG BasicsRNG BasicsRNG BasicsRNG Basics    and Introducand Introducand Introducand Introduction totion totion totion to    thethethethe    DRNGDRNGDRNGDRNG    

The Digital Random Number Generator, using the RDRAND instruction, is an innovative 

hardware approach to high-quality, high-performance entropy and random number 

generation. To understand how it differs from existing RNG solutions, we discuss in 

this section some of the basic concepts underlying random number generation.  

2.12.12.12.1 Random NumbeRandom NumbeRandom NumbeRandom Number Generators (r Generators (r Generators (r Generators (RNGsRNGsRNGsRNGs))))    
An RNG is a utility or device of some type that produces a sequence of numbers on an 

interval [min, max] such that values appear unpredictable. Stated a little more 

technically, we are looking for the following characteristics: 

• Each new value must be statistically independent of the previous value. That 

is, given a generated sequence of values, a particular value is not more likely 

to follow after it as the next value in the RNG's random sequence.  

• The overall distribution of numbers chosen from the interval is uniformly 

distributed. In other words, all numbers are equally likely and none are more 

"popular" or appear more frequently within the RNG’s output than others. 

• The sequence is unpredictable. An attacker cannot guess some or all of the 

values in a generated sequence. Predictability may take the form of forward 

prediction (future values) and backtracking (past values). 

Since computing systems are by nature deterministic, producing quality random 

numbers that have these properties (statistical independence, uniform distribution, 

and unpredictability) is much more difficult than it might seem. Sampling the seconds 

value from the system clock, a common approach, may seem random enough, but 

process scheduling and other system effects may result in some values occurring far 

more frequently than others. External entropy sources like the time between a user's 

keystrokes or mouse movements may likewise, upon further analysis, show that 

values do not distribute evenly across the space of all possible values; some values are 

more likely to occur than others, and certain values almost never occur in practice.  

Beyond these requirements, some other desirable RNG properties include: 

• The RNG is fast in returning a value (i.e., low response time) and can service 

a large number of requests within a short time interval (i.e., highly scalable).  

• The RNG is secure against attackers who might observe or change its 

underlying state in order to predict or influence its output or otherwise 

interfere with its operation. 

 

2.22.22.22.2 PseudoPseudoPseudoPseudo----Random Number Generators (PRNGs)Random Number Generators (PRNGs)Random Number Generators (PRNGs)Random Number Generators (PRNGs)    
One widely used approach to achieving good RNG statistical behavior is to leverage 

mathematical modeling in the creation of a Pseudo-Random Number Generator. A 

PRNG is a deterministic algorithm, typically implemented in software that computes a 

sequence of numbers that "look" random. A PRNG requires a seed value that is used to 
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initialize the state of the underlying model. Once seeded, it can then generate a 

sequence of numbers that exhibit good statistical behavior.  

PRNGs exhibit periodicity that depends on the size of its internal state model. That is, 

after generating a long sequence of numbers, all variations in internal state will be 

exhausted and the sequence of numbers to follow will repeat an earlier sequence. The 

best PRNG algorithms available today, however, have a period that is so large this 

weakness can practically be ignored. For example, the Mersenne Twister MT19937 

PRNG with 32-bit word length has a periodicity of 219937-1.[1] 

A key characteristic of all PRNGs is that they are deterministic. That is, given a 

particular seed value, the same PRNG will always produce the exact same sequence of 

"random" numbers. This is because a PRNG is computing the next value based upon a 

specific internal state and a specific, well-defined algorithm. Thus, while a generated 

sequence of values exhibit the statistical properties of randomness (independence, 

uniform distribution), overall behavior of the PRNG is entirely predictable.  

For some contexts, the deterministic nature of PRNGs is an advantage. For example, in 

some simulation and experimental contexts, researchers would like to compare the 

outcome of different approaches using the same sequence of input data. PRNGs 

provide a way to generate a long sequence of random data inputs that are repeatable 

by using the same PRNG, seeded with the same value.  

In other contexts, however, this determinism is highly undesirable. Consider a server 

application that generates random numbers to be used as cryptographic keys in data 

exchanges with client applications over secure communication channels. An attacker 

who knew the PRNG in use and also knew the seed value (or the algorithm used to 

obtain a seed value) would quickly be able to predict each and every key (random 

number) as it is generated. Even with a sophisticated and unknown seeding algorithm, 

an attacker who knows (or can guess) the PRNG in use can deduce the state of the 

PRNG by observing the sequence of output values. After a surprisingly small number of 

observations (e.g., 624 for Mersenne Twister MT19937), each and every subsequent 

value can be predicted. For this reason, PRNGs are considered to be cryptographically 

insecure.  

PRNG researchers have worked to solve this problem by creating what are known as 

Cryptographically Secure PRNGs (CSPRNGs). Various techniques have been invented in 

this domain, for example, applying a cryptographic hash to a sequence of consecutive 

integers, using a block cipher to encrypt a sequence of consecutive integers ("counter 

mode"), and XORing a stream of PRNG-generated numbers with plaintext ("stream 

cipher"). Such approaches improve the problem of inferring a PRNG and its state by 

greatly increasing its computational complexity, but the resulting values may or may 

not exhibit the correct statistical properties (i.e., independence, uniform distribution) 

needed for a robust random number generator. Furthermore, any deterministic 

algorithm is subject to discovery by an attacker through a wide variety of means (e.g., 

disassemblers, sophisticated memory attacks, a disgruntled employee). Even more 

common, attackers may discover or infer PRNG seeding by narrowing its range of 

possible values or snooping memory in some manner. Once the deterministic 

algorithm and its seed is known, whatever it is, then the attacker may be able to 

predict each and every random number generated, both past and future.  
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2.32.32.32.3 True RaTrue RaTrue RaTrue Random Number Generators (TRNGs)ndom Number Generators (TRNGs)ndom Number Generators (TRNGs)ndom Number Generators (TRNGs)    
For contexts where the deterministic nature of PRNGs is a problem to be avoided (e.g., 

gaming and computer security), a better approach is that of True Random Number 

Generators. 

Rather than using a mathematical model to deterministically generate numbers that 

look random and have the right statistical properties, a TRNG extracts randomness 

(entropy) from a physical source of some type and then uses it to generate random 

numbers. The physical source is also referred to as an entropy source and can be 

selected among a wide variety of physical phenomenon naturally available, or made 

available, to the computing system using the TRNG. For example, one can attempt to 

use the time between user key strokes or mouse movements as an entropy source. As 

pointed out earlier, this technique is crude in practice and resulting value sequences 

generally fail to meet desired statistical properties with rigor. The problem of what to 

use as an entropy source in a TRNG, is a key challenge facing TRNG designers.  

Beyond statistical rigor, it is also desirable for TRNGs to be fast and scalable (i.e., 

capable of generating a large number of random numbers within a small time 

interval). This poses a serious problem for many TRNGs because sampling an entropy 

source external to the computing system typically requires device I/O and long delay 

times relative to the processing speeds of today's computer systems. In general, 

sampling an entropy source in TRNGs is slow compared to the computation required by 

a PRNG to simply calculate its next random value. For this reason, PRNGs 

characteristically provide far better performance than TRNGs and are more scalable.  

Unlike PRNGs, however, TRNGs are not deterministic. That is, a TRNG need not be 

seeded, and its selection of random values in any given sequence is highly 

unpredictable. As such, an attacker cannot use observations of a particular random 

number sequence to predict subsequent values in an effective way. This property also 

implies that TRNGs have no periodicity. While repeats in random sequence are possible 

(albeit unlikely), they cannot be predicted in a manner useful to an attacker.  

 

2.42.42.42.4         Cascade Construction Cascade Construction Cascade Construction Cascade Construction RNGsRNGsRNGsRNGs    
A common approach used in modern operating systems (e.g., Linux [2]) and 

cryptographic libraries is to take input from an entropy source in order to supply a 

buffer or pool of entropy. This entropy pool is then used to provide nondeterministic 

random numbers that periodically seed a cryptographically secure PRNG (CSPRNG). 

This CSPRNG provides cryptographically secure random numbers that appear truly 

random and exhibit a well-defined level of computational attack resistance. 

A key advantage of this scheme is performance. It was noted above that sampling an 

entropy source is typically slow since it often involves device I/O of some type and 

often additional waiting for a real-time sampling event to transpire. In contrast, 

CSPRNG computations are fast since they are processor-based and avoid I/O and 

entropy source delays. Combined, the approach offers improved performance over 

TRNGs: a slow entropy source periodically seeding a fast CSPRNG capable of 

generating a large number of random values from a single seed. 
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Figure 1: Cascade Contruction Random Number Generator 

While this approach would seem ideal, in practice it often falls far short. First, since the 

implementation is typically in software, it is vulnerable to a broad class of software 

attacks. For example, considerable state requirements create the potential for 

memory-based attacks or timing attacks. Second, the approach does not solve the 

problem of what entropy source to use. Without an external source of some type, 

entropy quality is likely to be poor. For example, sampling user events (e.g., mouse, 

keyboard) may be impossible if the system resides in a large data center. Even with an 

external entropy source, entropy sampling is likely to be slow, making seeding events 

less frequent than desired. 

2.52.52.52.5 Introducing Introducing Introducing Introducing the the the the Digital Random Number GeneratDigital Random Number GeneratDigital Random Number GeneratDigital Random Number Generator or or or 

(DRNG)(DRNG)(DRNG)(DRNG)    
The Digital Random Number Generator (DRNG) is an innovative hardware approach to 

high-quality, high-performance entropy and random number generation. It is 

composed of a new Intel 64 Architecture instruction, RDRAND, and an underlying 

DRNG hardware implementation. 

With respect to the RNG taxonomy discussed above, the DRNG follows the cascade 

construction RNG model, using a processor resident entropy source to repeatedly seed 

a hardware-implemented CSPRNG. Unlike software approaches, it includes a high-

quality entropy source implementation that can be sampled quickly to repeatedly seed 

the CSPRNG with high-quality entropy. Furthermore, it represents a self-contained 

hardware module that is isolated from software attacks on its internal state. The result 
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is a solution that achieves RNG objectives with considerable robustness:  statistical 

quality (independence, uniform distribution), highly unpredictable random number 

sequences, high performance, and protection against attack.  

This method of digital random number generation is unique in its approach to true 

random number generation in that it is implemented in hardware on the processor chip 

itself and can be utilized through a new instruction added to the Intel 64 instruction 

set. As such, response times are comparable to those of competing PRNG approaches 

implemented in software. The approach is scalable enough for even demanding 

applications to use it as an exclusive source of random numbers and not merely a high 

quality seed for a software-based PRNG. Software running at all privilege levels can 

access random numbers through the instruction set, bypassing intermediate software 

stacks, libraries, or operating system handling. 

The use of RDRAND leverages a variety of cryptographic standards to ensure the 

robustness of its implementation and to provide transparency in its manner of 

operation. These include NIST SP800-90, FIPS-140-2, and ANSI X9.82. Compliance to 

these standards makes Digital Random Number Generation with RDRAND a viable 

solution for highly regulated application domains in government and commerce. 

Section 3 describes digital random number generation in detail. Section 4 describes 

use of RDRAND, an Intel 64 instruction set extension for using the DRNG. 

 

2.62.62.62.6 ApplicationsApplicationsApplicationsApplications    for thefor thefor thefor the    Digital Random Number GeneratDigital Random Number GeneratDigital Random Number GeneratDigital Random Number Generatorororor    
Information security is a key application that utilizes the DRNG. Cryptographic 

protocols rely on RNGs for generating keys and fresh session values (e.g., a nonce) to 

prevent replay attacks. In fact, a cryptographic protocol may have considerable 

robustness but suffer from widespread attack due to weak key generation methods 

underlying it (e.g., Debian/OpenSSL Fiasco [3]). The DRNG can be used to fix this 

weakness, thus significantly increasing cryptographic robustness.  

Closely related are government and industry applications. Due to information 

sensitivity, many such applications must demonstrate their compliance with security 

standards like FISMA, HIPPA, PCIAA, etc. RDRAND has been engineered to meet 

existing security standards like NIST SP800-90, FIPS 140-2, and ANSI X9.82, and thus 

provides an underlying RNG solution that can be leveraged in demonstrating 

compliance with information security standards. 

Other uses of the DRNG include: 

• Communication protocols 

• Monte Carlo simulations and scientific computing 

• Gaming applications 

• Bulk entropy applications like secure disk wiping or document shredding 

• Protecting online services against RNG attacks 
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3333     DRNG ODRNG ODRNG ODRNG Overviewverviewverviewverview    

In this section, we describe in some detail the components of the DRNG using the 

RDRAND instruction and their interaction. 

3.13.13.13.1 Processor Processor Processor Processor ChipChipChipChip    ViewViewViewView    
Figure 2 provides a high-level schematic of the RDRAND Random Number 

Generation. As shown, the DRNG appears as a hardware module on the processor 

chip. An interconnect bus connects it with each core.  

 

   

 

 

Figure 2: Digital Random Number Generator using RDRAND Design 

The RDRAND instruction (detailed in section 4) is handled by microcode on each 

core. This includes an RNG microcode module that handles interactions with the 

DRNG hardware module on the processor chip. 
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3.23.23.23.2 Component Component Component Component ArchitectureArchitectureArchitectureArchitecture    
As shown in Figure 3, the DRNG can be thought of as three logical components 

forming an asynchronous production pipeline: an entropy source (ES) that 

produces random bits from a nondeterministic hardware process at around 3 

Gbps, a conditioner that uses AES[4] in CBC-MAC[6] mode to distill the entropy 

into high-quality nondeterministic random numbers, and a deterministic random 

bit generator (DRBG) that is seeded from the conditioner.  

The conditioner can be equated to the entropy pool in the cascade construction 

RNG described previously. However, since it is fed by a high-quality, high-speed, 

continuous stream of entropy that is faster than downstream processes can 

consume, it does not need to maintain an entropy pool. Instead, it is always 

conditioning fresh entropy independent of past and future entropy.  

The final stage is a hardware CSPRNG that is based on AES in CTR mode and is 

compliant with SP800-90. In SP800-90 terminology, this is referred to as a DRBG 

(Deterministic Random Bit Generator), a term we will use throughout the 

remainder of this document. 

 

 

 

Figure 3: DRNG Component Architecture 

 

 

3.2.13.2.13.2.13.2.1 Entropy Source (ES)Entropy Source (ES)Entropy Source (ES)Entropy Source (ES)    

The all-digital Entropy Source (ES), also known as a non-deterministic random bit 

generator (NRBG), provides a serial stream of entropic data in the form of zeros 

and ones.  

The ES runs asynchronously on a self-timed circuit and uses thermal noise within 

the silicon to output a random stream of bits at the rate of 3 GHz. The ES needs 

no dedicated external power supply to run, instead using the same power supply 

as other core logic. The ES is designed to function properly over a wide range of 

operating conditions, exceeding the normal operating range of the processor.   
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Bits from the ES are passed to the conditioner for further processing. 

3.2.23.2.23.2.23.2.2 ConditionerConditionerConditionerConditioner    

The conditioner takes pairs of 256-bit raw entropy samples generated by the ES 

and reduces them to a single 256-bit conditioned entropy sample using AES-CBC-

MAC. This has the effect of distilling the entropy into more concentrated samples. 

AES, Advanced Encryption Standard, is defined in the FIPS-197 Advanced 

Encryption Standard [4]. CBC-MAC, Cipher Block Chaining - Message 

Authentication Code, is defined in NIST SP 800-38A Recommendation for Block 

Cipher Modes of Operation [6]. 

The conditioned entropy is output as a 256-bit value and passed to the next 

stage in the pipeline to be used as a DRBG seed value.  

3.2.33.2.33.2.33.2.3 Deterministic Random Bit Generator (DRBG)Deterministic Random Bit Generator (DRBG)Deterministic Random Bit Generator (DRBG)Deterministic Random Bit Generator (DRBG)    
The role of the deterministic random bit generator (DRBG) is to "spread" a 

conditioned entropy sample into a large set of random values, thus increasing the 

amount of random numbers available by the hardware module. This is done by 

employing a standards-compliant DRBG and continuously reseeding it with the 

conditioned entropy samples.  

The DRBG chosen for this function is the CTR_DRBG defined in section 10.2.1 of 

NIST SP 800-90 [5], using the AES block cipher. Values that are produced fill a 

FIFO output buffer that is then used in responding to RDRAND requests for 

random numbers.  

The DRBG autonomously decides when it needs to be reseeded to refresh the 

random number pool in the buffer and is both unpredictable and transparent to 

the RDRAND caller. An upper bound of 511 128-bit samples will be generated per 

seed. That is, no more than 511*2=1022 sequential DRNG random numbers will 

be generated from the same seed value. 

 

3.33.33.33.3 Robustness and SelfRobustness and SelfRobustness and SelfRobustness and Self----ValidationValidationValidationValidation        
To ensure the DRNG functions with a high degree of reliability and robustness, 

validation features have been included that operate in an ongoing manner and at 

system startup time. These include the DRNG Online Health Tests (OHTs) and 

Built-In Self Tests (BISTs), respectively. Both are shown in Figure 4.  
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Figure 4: DRNG Self-Validation Components 
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3.3.13.3.13.3.13.3.1 Online Health TestsOnline Health TestsOnline Health TestsOnline Health Tests    (OHTs)(OHTs)(OHTs)(OHTs)    
Online Health Tests (OHTs) are designed to measure the quality of entropy 

generated by the ES using both per sample and sliding window statistical tests in 

hardware.  

Per sample tests compare bit patterns against expected pattern arrival 

distributions as specified by a mathematical model of the ES. An ES sample that 

fails this test is marked "unhealthy." Using this distinction, the conditioner can 

ensure that at least two healthy samples are mixed into each seed. This defends 

against hardware attacks that might seek to reduce the entropic content of the 

ES output. 

Sliding window tests look at sample health across many samples to verify they 

remain above a required threshold. The sliding window size is large (65536 bits) 

and mechanisms overall ensure that ES is operating correctly before it will issue 

random numbers. In the rare event that the DRNG fails during runtime, it would 

cease to issue random numbers rather than issue poor quality random numbers.   

3.3.23.3.23.3.23.3.2 BuiltBuiltBuiltBuilt----In Self Tests In Self Tests In Self Tests In Self Tests (BISTs)(BISTs)(BISTs)(BISTs)    

Built-In Self Tests (BISTs) are designed to verify the health of the ES prior to 

making the DRNG available to software. These include Entropy Source Tests (ES-

BIST) that are statistical in nature, and comprehensive test coverage of all the 

DRNG’s deterministic downstream logic through BIST Known Answer Tests (KAT-

BIST). 

ES-BIST involves running the DRNG for a probationary period in its normal mode 

before making the DRNG available to software. This allows the OHTs to examine 

ES sample health for a full sliding window (256 samples) before concluding that 

ES operation is healthy. It also fills the sliding window sample pipeline to ensure 

the health of subsequent ES samples, seeds the PRNG, and fills the output queue 

of the DRNG with random numbers. 

KAT-BIST tests both OHT and end-to-end correctness using deterministic input 

and output validation. First, various bit stream samples are input to the OHT, 

including a number with poor statistical quality. Samples cover a wide range of 

statistical properties and test whether the OHT logic correctly identifies those that 

are "unhealthy." During the KAT-BIST phase, deterministic random numbers are 

output continuously from the end of the pipeline. The BIST Output Test Logic 

verifies that the expected outputs are received.  

If there is a BIST failure during startup, the DRNG will refuse to issue random 

numbers and will issue a BIST failure notification to the on-chip test circuitry. 

This BIST logic avoids the need for conventional on-chip test mechanisms (e.g., 

scan and JTAG) that could undermine the security of the DRNG. 
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3.43.43.43.4 RDRANDRDRANDRDRANDRDRAND        
Software access to the DRNG is through a new instruction, RDRAND, and is 

documented in Section 7 of the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual.  

RDRAND retrieves a hardware generated random value from the DRNG and 

stores it in the destination register given as an argument to the instruction. The 

size of the random value (16-, 32-, or 64-bits) is determined by the size of the 

register given. The carry flag (CF) must be checked to determine whether a 

random value was available at the time of instruction execution. 

Note that RDRAND is available to any system or application software running on 

the platform. That is, there are no hardware ring requirements that restrict 

access based on process privilege level. As such, RDRAND may be invoked as 

part of an operating system or hypervisor system library, a shared software 

library, or directly by an application.  

To determine programmatically whether a given Intel platform supports RDRAND, 

the user can use the CPUID instruction to examine bit 30 of the ECX register. See 

Reference [7] for details. 

3.53.53.53.5 Performance Performance Performance Performance     
Designed to be a high performance entropy resource shared between multiple 

cores/threads, Digital Random Number Generation combined with RDRAND 

represents a new generation of RNG performance.  

The DRNG is implemented in hardware as part of the processor chip. As such, 

both the entropy source and the DRBG execute at processor clock speeds. Unlike 

other hardware-based solutions, there is no system I/O required to obtain 

entropy samples, and no off-chip bus latencies to slow entropy transfer or create 

bottlenecks when multiple requests have been issued. 

Random values are delivered directly through an instruction level request 

(RDRAND). This bypasses both operating system and software library handling of 

the request. The DRNG is scalable enough to support heavy server application 

workloads. Within the context of virtualization, the DRNG's stateless design and 

atomic instruction access means that RDRAND can be used freely by multiple VMs 

without the need for hypervisor intervention or resource management. 

 

Below are some charts showing some preliminary data from a pre-production 

sample on a system with a 3rd generation Intel® Core™ family processor, code-

named Ivy Bridge: 

Disclaimer: Data taken from an early engineering sample board with a 3rd 

generation Intel Core family processor, code-named Ivy Bridge, quad core, 4 

GB memory, hyper-threading enabled. Software: LINUX* Fedora 14, GCC 

version 4.6.0 (experimental) with RDRAND support, test uses p-threads 

kernel API. 

 

Measured Throughput: 
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• Up to 70 million RDRAND invocations per second 

• 500+ million bytes of random data per second 

• Throughput ceiling is insensitive to the number of contending parallel threads 

Notice that steady state is maintained at peak performance 

 

 

RDRAND Response Time and Reseeding Frequency 

• ~150 clocks per invocation  

Note: Varies with CPU clock frequency since constraint is shared data path 

from DRNG to cores. 

• Little contention until 8 threads 

– or 4 threads on 2 core chip 

• Simple linear increase as additional threads are added 

– DRNG Reseed Frequency 

• Single thread worst case: Reseeds every 4 RDRAND invocations 

• Multiple thread worst case: Reseeds every 23 RDRAND invocations 

• At slower invocation rate, can expect reseed before every 2 RDRAND calls 
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–  NIST SP 800-90 recommends ≤ 248
 

 

 

 

3.63.63.63.6 Power Requirements Power Requirements Power Requirements Power Requirements     
The DRNG hardware resides on the processor chip. As such, it needs no 

dedicated power supply to run. Instead it simply uses the processor's local power 

supply. As described in section 3.2.1, it furthermore is designed to function 

across a range of process voltage and temperature (PVT) levels, exceeding the 

normal operating range of the processor.   

The DRNG does not impact power management mechanisms and algorithms 

associated with individual cores. For example, ACPI-based mechanisms for 

regulating processor performance states (P-states) and processor idle states (C-

states) on a per core basis are unaffected. 

To save power, the DRNG clock gates itself off when queues are full. This idle-

based mechanism results in negligible power requirements whenever entropy 

computation and post processing are not needed. 
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4444 RDRANDRDRANDRDRANDRDRAND    InstructionInstructionInstructionInstruction    UsageUsageUsageUsage    

In this section, we provide RDRAND instruction reference information and usage 

examples for programmers. All code examples in this guide are licensed under 

the new, 3-clause BSD license, making them freely usable within nearly any 

software context.  

For additional details on RDRAND usage and code examples, see Reference [7]. 

 

Determining Processor Support for RDRAND 

Before using the RDRAND instruction, an application or library should first 

determine whether the underlying platform supports the instruction, and hence 

includes the underlying DRNG feature. This can be done using the CPUID 

instruction. In general, CPUID is used to return processor identification and 

feature information stored in the EAX, EBX, ECX, and EDX registers. For detailed 

information on CPUID, refer to References [8] and [9]. 

To be specific, support for RDRAND can be determined by examining bit 30 of the 

ECX register returned by CPUID. As shown in Tables 1 (below) and 2-23 in 

Reference [7], a value of 1 indicates processor support for RDRAND while a value 

of 0 indicates no processor support. 

 

Bit # Mnemonic Description 

30 RDRAND A value of 1 indicates that processor supports 

RDRAND instruction 

Table 1: Feature information returned in the ECX register. 

 

Two options for invoking the CPUID instruction within the context of a high-level 

programming language like C or C++ are with: 

 

• An inline assembly routine  

• An assembly routine defined in an independent file.  

Various examples in this chapter will illustrate both techniques. The advantage of 

inline assembly is that it is straightforward and easily readable within its source 

code context. The disadvantage, however, is that conditional code is often 

needed to handle the possibility of different underlying platforms. This can 

quickly compromise readability. For this reason, we often favor defining an 

assembly routine in an independent file and then invoking it by its declared 

name. Now the original source code (the caller of the routine) can remain 

unchanged, while the build system can handle choosing among code versions of 

the same routine for different platform targets.  

This Implementation Guide describes Linux implementation. Please see the DRNG 

downloads for Windows* and Mac* OS examples. 
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- Note: Nothing goes to memory. These samples were written a certain way for 

a reason. 

Example 1 shows the definition of the function get_cpuid_info_v1 for gcc 

compilation on 64-bit Linux. 

 

.intel_syntax noprefix                   

           .text                         

           .global     get_cpuid_info_v1    

get_cpuid_info_v1:                          

           mov r8, rdi   #  array addr 

           mov r9, rsi   #  leaf 

           mov r10, rdx  #  subleaf 

           push        rax               

           push        rbx               

           push        rcx               

           push        rdx               

           mov         eax, r9d          

           mov         ecx, r10d 

           cpuid                         

           mov         DWORD PTR [r8], eax  

           mov         DWORD PTR [r8+4], ebx  

           mov         DWORD PTR [r8+8], ecx  

           mov         DWORD PTR [r8+12], edx  

           pop         rdx               

           pop         rcx               

           pop         rbx               

           pop         rax               

           ret         0                 

#get_cpuid_info_v1 ENDP                     

#_TEXT     ENDS         

 

Code Example 1: Using CPUID to detect support for RDRAND on 64-bit Linux. 

 

The routine, defined in the file get_cpuid_v1_lix64.s, can be compiled into object 

code with gcc as follows: 

 

gcc -g -c get_cpuid_v1_lix64.s -o get_cpuid_v1_lix64.o 

 

To use the IA-64 assembly routine, first define the data structure to be passed to 

the routine in a header file like get_cpuid_v1_lix64.h: 

 

typedef struct { 

        unsigned int EAX;         

             unsigned int EBX; 

        unsigned int ECX; 
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        unsigned int EDX; 

} CPUIDinfo; 

 

extern void get_cpuid_info_v1(CPUIDinfo *info, const unsigned int func, 

const unsigned int subfunc); 

 

Code Example 2: Header file to be used by assembly routine caller. 

 

This header file also declares the function and uses extern to indicate that it is 

externally defined.  

To invoke this assembly routine from a C/C++ program, include the above 
header file, create a CPUIDinfo object to hold the results, and invoke the 

externally defined function. One possible implementation of these steps is as 

follows:  

 

#include "get_cpuid_v1_lix64.h" 

 

void _CPUID(CPUIDinfo *info, const unsigned int func, const unsigned int 

subfunc) 

{ 

        get_cpuid_info_v1(info, func, subfunc); 

} 

 

typedef unsigned int DWORD; 

 

int _rdrand_check_support() 

{ 

        CPUIDinfo info; 

        int got_intel_cpu=0; 

 

        _CPUID(&info,0,0); 

        if(memcmp((char *)(&info.EBX), "Genu", 4) == 0 && 

                memcmp((char *)(&info.EDX), "ineI", 4) == 0 && 

                memcmp((char *)(&info.ECX), "ntel", 4) == 0) { 

                        got_intel_cpu = 1; 

        } 

 

        if (got_intel_cpu) { 

                _CPUID(&info,1,0); 

                if ((info.ECX & 0x40000000)==0x40000000) return 1; 

        } 

        return 0; 

} 

 

Code Example 3: Invoking get_cpuid_info_v1 to determine RDRAND support. 

 



Intel DRNG Software Implementation Guide 

23 

 

After the first _CPUID call in this example, the code checks whether the current 

processor is an Intel product. After the second _CPUID call, the code checks the 

RDRAND bit. Checking the manufacturer becomes important if another 

manufacturer uses bit 30 for a different purpose. 

 

4.14.14.14.1 Using Using Using Using RDRANDRDRANDRDRANDRDRAND    tttto Obtain Random Valueso Obtain Random Valueso Obtain Random Valueso Obtain Random Values    
Once support for RDRAND can be verified using CPUID, the RDRAND instruction 

can be invoked to obtain a 16-, 32-, or 64-bit random integer value. Note that 

this instruction is available at all privilege levels on the processor, so system 

software and application software alike may invoke RDRAND freely. 

The Intel® 64 and IA-32 Architectures Software Developer’s Manual [7] provides 

a table describing RDRAND instruction usage as follows: 

 

Opcode/ 

Instruction 

Op 

Encoding 

64/32bit 

Mode 

Support 

CPUID 

Feature 

Flag 

Description 

0F C7 /6 

RDRAND r16 

ModRM:r

/m(w) 

V/V RDRAND Read a 16-bit random 

number and store in the 

destination register. 

0F C7 /6 

RDRAND r32 

ModRM:r

/m(w) 

V/V RDRAND Read a 32-bit random 

number and store in the 

destination register. 

REX.W + 0F C7 /6 

RDRAND r64 

ModRM:r

/m(w) 

V/I RDRAND Read a 64-bit random 

number and store in the 

destination register. 

 

Table 2: RDRAND instruction reference 

 

Essentially, the user invokes this instruction with a single operand, the 

destination register where the random value will be stored. Note that this register 

must be a general purpose register, and the size of the register (16, 32, or 64 

bits) will determine the size of the random value returned. 

After invoking the RDRAND instruction, the caller must examine the carry rlag 

(CF) to determine whether a random value was available at the time the RDRAND 

instruction was executed. A value of 1 indicates that a random value was 

available and placed in the destination register provided in the invocation. A 

value of 0 indicates that a random value was not available. In this case, the 

destination register will also be zeroed. 

Note that a destination register value of zero should not be used as an indicator 

of random value availability. The CF is the sole indicator of random value 

availability. 
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Carry Flag Value Outcome 

CF = 1 Destination register valid. Non-zero random value 

available at time of execution. Result placed in 

register. 

CF = 0 Destination register all zeros. Random value not 

available at time of execution. May be retried. 

 

Table 3: Carry Flag (CF) outcome semantics. 

 

4.1.14.1.14.1.14.1.1 Simple Simple Simple Simple RDRANDRDRANDRDRANDRDRAND    InvocationInvocationInvocationInvocation    

The unlikely possibility that a random value may not be available at the time of 

RDRAND instruction invocation has significant implications for system or 

application API definition. While many random functions are defined quite simply 

in the form: 

 

unsigned int GetRandom() 

 

use of RDRAND requires wrapper functions that appropriately manage the 

possible outcomes based on the CF flag value. 

One handling approach is to simply pass the instruction outcome directly back to 

the invoking routine. A function signature for such an approach may take the 

form: 

 

int rdrand(unsigned int *therand) 

 

In this approach, the return value of the function acts as a flag indicating to the 

caller the outcome of the RDRAND instruction invocation. If 1, the variable 

passed by reference will be populated with a usable random value. If 0, the caller 

understands that the value assigned to the variable is not usable. The advantage 

of this approach is that it gives the caller the option to decide how to proceed 

based on the outcome of the call. 

Code examples 4, 5, and 6 show how this approach can be implemented for 16-, 

32-, and 64-bit invocations of RDRAND using the inline assembly approach. 

 

int _rdrand16_step(unsigned short *therand) { 

 unsigned char err; 

 

 asm volatile("rdrand %0 ; setc %1" 

     : "=r" (*therand), "=qm" (err)); 
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 return (int) err; 

} 

Code Example 4: Simple RDRAND invocation for a 16-bit random value 

 

int _rdrand32_step(unsigned int *therand) { 

 unsigned char err; 

 

 asm volatile("rdrand %0 ; setc %1" 

     : "=r" (*therand), "=qm" (err)); 

 

 return (int) err; 

} 

 

Code Example 5: Simple RDRAND invocation for a 32-bit random value 

 

 

int _rdrand64_step(unsigned long long int *therand) { 

 unsigned char err; 

 

 asm volatile("rdrand %0 ; setc %1" 

     : "=r" (*therand), "=qm" (err)); 

 

 return (int) err; 

} 

Code Example 6: Simple RDRAND invocation for a 64-bit random value 

 

4.1.24.1.24.1.24.1.2 RDRANDRDRANDRDRANDRDRAND    Retry LoopRetry LoopRetry LoopRetry Loop    
An alternate approach for handling random value unavailability at the time of 

RDRAND execution is to use a retry loop. In this approach, an additional 

argument allows the caller to specify the maximum number of retries before 

returning a failure value. 

 

int rdrand(unsigned int retry_limit, unsigned int *therand) 

 

Once again, the success or failure of the function is indicated by its return value 

and the actual random value, assuming success, is passed to the caller by a 

reference variable. 

Code example 7 shows an implementation for 32-bit random values using the 

function from the previous section as an underlying primitive. 

 

int _rdrand_get_uint_retry(unsigned int retry_limit, unsigned int *dest) 

{ 

int success; 
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int count; 

unsigned int therand; 

 

count = 0; 

 

do 

{ 

      success=_rdrand32_step(&therand); 

} while((success == 0) || (count++ < retry_limit)); 

 

if (success == 1) 

{ 

      *dest = therand; 

      return 1; 

} 

else 

{ 

      return 0; 

} 

}  

Code Example 7: 32-bit RDRAND invocation with a retry loop 

 

4.24.24.24.2 Initializing Data Objects of Arbitrary SizeInitializing Data Objects of Arbitrary SizeInitializing Data Objects of Arbitrary SizeInitializing Data Objects of Arbitrary Size    
A common random function within RNG libraries is seen below: 

 

int rdrand_get_n_bytes(unsigned int n, unsigned char *dest) 

 

In this function, a data object of arbitrary size is initialized with random bytes. 

The size is specified by the variable n, and the data object is passed in as a 

pointer to char or void.  

Implementing this function requires a loop control structure and iterative calls to 
the rdrand64_step() or rdrand32_step() functions shown previously. To 

simplify, let's first consider populating an array of unsigned int with random 
values in this manner using rdrand32_step(). 

 

int rdrand_get_n_uints(int n, unsigned int *dest) 

{ 

        int dwords; 

        int i; 

        unsigned int drand; 

        int success;  

        int total_uints; 

 

 total_uints = 0;         
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 for (i=0; i<dwords; i++) 

        { 

                if (rdrand32_step(&drand)) 

                { 

                        *dest = drand; 

                        dest++; 

                        total_uints++; 

                } 

   else  

{ 

i = dwords; 

} 

        } 

        return total_uints; 

} 

 

Code Example 8: Initializing an object of arbitrary size using RDRAND 

 

The function returns the number of unsigned int values assigned. The caller would 

check this value against the number requested to determine whether assignment was 

successful. Other implementations are possible, for example, using a retry loop to 

handle the unlikely possibility of random number unavailability. 

In the next example, we reduce the number of RDRAND calls in half by using 
rdrand64_step() instead of rdrand32_step(). 

 

int rdrand_get_n_uints(int n, unsigned int *dest) 

{ 

        int qwords;     

 int i; 

        unsigned long int qrand; 

        int success; 

        int total_uints; 

        unsigned long int *qptr; 

 

        total_uints = 0; 

        qptr = (unsigned long int*)dest; 

        qwords = n/2; 

 

        for (i=0; i<qwords; i++) 

        { 

                if (_rdrand64_step(&qrand)) 

                { 

                        *qptr = qrand; 

                        qptr++; 

                        total_uints+=2; 

                } 

  else  
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{ 

i = qwords; 

} 

        } 

        if ((qwords > 0) && (success == 0))  

return total_uints; 

 

} 

 

Code Example 9: Initializing an object of arbitrary size using RDRAND. 

 

Finally, we show how a loop control structure and rdrand64_step() can be used to 

populate a byte array with random values. 

 

int _rdrand_get_bytes_step(unsigned int n, unsigned char *dest) 

{ 

unsigned char *start; 

unsigned char *residualstart; 

unsigned long long int *blockstart; 

unsigned int count; 

unsigned int residual; 

unsigned int startlen; 

unsigned long long int i; 

unsigned long long int temprand; 

unsigned int length; 

 

/* Compute the address of the first 64 bit aligned block in the destination 

buffer */ 

        start = dest; 

        if (((unsigned long int)start % (unsigned long int)8) == 0) 

        { 

blockstart = (unsigned long long int *)start; 

count = n;s 

startlen = 0; 

        } 

        else 

        { 

blockstart = (unsigned long long int *)(((unsigned long long int)start & 

~(unsigned long long int)7)+(unsigned long long int)8); 

count = n - (8 - (unsigned int)((unsigned long long int)start % 8)); 

startlen = (unsigned int)((unsigned long long int)blockstart - (unsigned 

long long int)start); 

        } 

 

        /* Compute the number of 64 bit blocks and the remaining number of bytes */ 

        residual = count % 8; 

        length = count >> 3; 

        if (residual != 0) 
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        { 

                residualstart = (unsigned char *)(blockstart + length); 

        } 

/* Get a temporary random number for use in the residuals. Failout if retry 

fails */ 

        if (startlen > 0) 

        { 

if (_rdrand_get_n_qints_retry(1, 10, (void *)&temprand) == 0) return 0; 

        } 

 

        /* populate the starting misaligned block */ 

for (i = 0; i<startlen; i++) 

        { 

                start[i] = (unsigned char)(temprand & 0xff); 

                temprand = temprand >> 8; 

        } 

 

        /* populate the central aligned block. Fail out if retry fails */ 

        if (_rdrand_get_n_qints_retry(length, 10, (void *)(blockstart)) == 0) return 

0; 

 

        /* populate the final misaligned block */ 

        if (residual > 0) 

        { 

                if (_rdrand_get_n_qints_retry(1, 10, (void *)&temprand) == 0) return 

0; 

                for (i = 0; i<residual; i++) 

                { 

                        residualstart[i] = (unsigned char)(temprand & 0xff); 

                        temprand = temprand >> 8; 

                } 

        } 

 

        return 1; 

} 

 

Code Example 10: Initializing an object of arbitrary size using RDRAND 

 

4.34.34.34.3 Library API Library API Library API Library API RecommendationsRecommendationsRecommendationsRecommendations    
 

Library APIs making RDRAND available to other applications may do so at two 

levels. First, a library may offer a low-level wrapper for invoking RDRAND to 

obtain 16-, 32-, or 64-bit random values. Results of the CF flag value indicating 

availability of a random value at the time of execution are returned directly to the 

caller. 
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int _rdrand_u16_step(unsigned short int *); 

int _rdrand_u32_step(unsigned int *); 

int _rdrand_u64_step(unsigned __int64 *); 

 

Second, a library may offer high-level functions that manage various aspects of 

RDRAND invocation. Functions may, for example, handle the possibility of 

random value unavailability with retry loops.  

 

int _rdrand_get_uint_retry(unsigned int retry_limit, unsigned int *dest); 

 

Other functions may handle multiple invocations of RDRAND to fill arrays or other 

objects of arbitrary size and type. 

 

int _rdrand_get_rand_step(unsigned int n, void *dest); 

int _rdrand_get_rand_step_retry(unsigned int n, unsigned int retry_limit, 

void *dest); 

 

4.44.44.44.4 GuaranteeingGuaranteeingGuaranteeingGuaranteeing    DBRG DBRG DBRG DBRG ResResResReseeding eeding eeding eeding     
 

As a high performance source of random numbers, the DRNG is both fast and 

scalable. It is directly usable as a sole source of random values underlying an 

application or operating system RNG library. Still, some software venders will 

want to use the DRNG to seed and reseed in an ongoing manner their current 

software PRNG. Some may furthermore feel it necessary, for standards 

compliance, to demand an absolute guarantee that values returned by RDRAND 

reflect independent entropy samples within the DRNG. 

As described in section 3.2.3, the DRNG makes use of a deterministic random bit 

generator, or DRBG, to "spread" a conditioned entropy sample into a large set of 

random values, thus increasing the number of random numbers available by the 

hardware module. The DRBG autonomously decides when it needs to be 

reseeded, behaving in a way that is unpredictable and transparent to the 

RDRAND caller. There is an upper bound of 511 samples per seed in the 

implementation where samples are 128 bits in size and can provide two 64-bit 

random numbers each. In practice, the DRBG is reseeded frequently, and it is 

generally the case that reseeding occurs long before the maximum number of 

samples can be requested by RDRAND. 

There are two approaches to structuring RDRAND invocations such that DRBG 

reseeding can be guaranteed: 

• Iteratively execute RDRAND beyond the DRBG upper bound by executing 

more than 1022 64-bit RDRANDs 

• Iteratively execute 32 RDRAND invocations with a 10 us wait period per 

iteration. 
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The latter approach has the effect of forcing a reseeding event since the DRBG 

aggressively reseeds during idle periods.   

The code example below exercises the second approach to guarantee that the 

random value returned is based on an entropy sample independent from the prior 

function invocation and independent from the subsequent function invocation.  

 

/* CBC-MAC together 32 128 bit values, gathered with delays between, to guarantee 

some intervening reseeds      */ 

/* Creates a random value that is fully forward and backward prediction 

resistant, suitable for seeding a NIST SP800-90 Compliant, FIPS 1402-2 

certifiable SW DRBG */ 

 

int _rdrand_get_seed128_retry(unsigned int retry_limit, void *buffer) 

{ 

        unsigned char m[16]; 

        unsigned char key[16]; 

        unsigned char ffv[16];  /* feed forward value */ 

        unsigned char xored[16]; 

        unsigned int i; 

 

        for (i=0;i<16;i++) 

        { 

                key[i]=(unsigned char)i; 

                ffv[i]=0;   

        } 

 

        for (i=0; i<32; i++) 

        { 

                usleep(10); 

                if (_rdrand_get_n_uints_retry(2,retry_limit,(unsigned long long 

int*)m) == 0) return 0; 

                xor_128(m,ffv,xored); 

                aes128k128d(key,xored,ffv); 

        } 

 

        for (i=0;i<16;i++) ((unsigned char *)buffer)[i] = ffv[i]; 

        return 1; 

} 

 

Note the use of xor_128() and aes128k128d(), two functions found in most AES 

library implementations. The random data gathered from the multiple RDRAND 

invocations should be combined using a suitable cryptographic function to yield a 

single 128-bit value that is suitable for use as a seed by a secure software PRNG.  
Here, xor_128 () and aes128k128d() together implement the AES-CBC-MAC mode of 

operation with AES. 
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NoticesNoticesNoticesNotices    

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. 

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY 

INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS 
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The products described in this document may contain design defects or errors known as errata 

which may cause the product to deviate from published specifications. Current characterized errata 

are available on request.  

 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before 
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Optimization NoticeOptimization NoticeOptimization NoticeOptimization Notice    

 

Optimization Notice 

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for 

optimizations that are not unique to Intel microprocessors.  These optimizations include SSE2, SSE3, 

and SSE3 instruction sets and other optimizations.  Intel does not guarantee the availability, 

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. 

 

Microprocessor-dependent optimizations in this product are intended for use with Intel 

microprocessors.  Certain optimizations not specific to Intel microarchitecture are reserved for Intel 

microprocessors.  Please refer to the applicable product User and Reference Guides for more 

information regarding the specific instruction sets covered by this notice.   
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